Zerfällungskörper.

Zerfällungskörper.
Zerfällungskörper.
 
Ist f (X ) ein Polynom positiven Grades über dem Körper K, so existiert ein Oberkörper E von K, der als Zerfällungskörper von f (X ) über K bezeichnet wird, wenn er folgenden Eigenschaften genügt: 1) f (X ) zerfällt über E in Linearfaktoren, d. h., es existieren x1,. .., xmE, sodass f (X ) = a (Xx1) ·. .. · (Xxm); 2) f (X ) zerfällt über keinem kleineren, in E enthaltenen Oberkörper von K in Linearfaktoren. - Ist E ' ein weiterer Zerfällungskörper von f (X ) über K, so sind E und E ' als K-Algebren isomorph.

Universal-Lexikon. 2012.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Zerfällungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Galoissch — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Körpererweiterung — In der abstrakten Algebra ist ein Unterkörper K eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Körpererweiterung (Mathematik) — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Perfekter Körper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Zwischenkörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Galois-Gruppe — Die Galoisgruppe (nach Évariste Galois) ist eine Gruppe, mit deren Hilfe in der Algebra Körpererweiterungen untersucht werden können. Die Zwischenkörper einer Körpererweiterung lassen sich gewissen Untergruppen der Galoisgruppe zuordnen. Damit… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”